Inference Guide – Categorical Data Distributions (χ^2)

One Variable

One Sample [df = # of cells/categories - 1]

└⊳ compared with population model

 H_0 : distribution = specified model

 H_A : distribution \neq specified model (right sided)

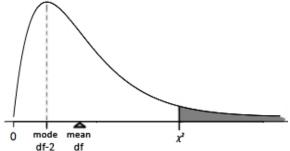
A0 Data are counts.

C0 (Are they?)

A1 Individuals/data independent.

C1 SRS and n < 10% population.

A2 Sample large enough


C2 All expected counts \geq 5.

 χ^2 test for Goodness-of-Fit [df = # of cells – 1]

$$\chi^2 = \sum_{all \ cells} \frac{(Obs - Exp)^2}{Exp}$$

One Variable	Obs Counts	Exp Value (Counts)	Residuals (Obs-Exp)	(Resid) ²	Component (Obs-Exp) ² Exp
Cat. 1		∑Obs*hyp			
Cat. 2		∑Obs*hyp			
Cat. 3		∑Obs*hyp			
Cat. 4		∑Obs*hyp			

P-value = χ^2 cdf (χ^2 , 999, df)

Or use: χ^2 GOF-Test (L_{Obs}, L_{Exp}, df) If reject H₀, then $\frac{1}{2}$